\(\int \frac {1}{(3+3 \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx\) [402]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 30, antiderivative size = 179 \[ \int \frac {1}{(3+3 \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx=-\frac {\cos (e+f x)}{4 f (3+3 \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}}-\frac {\cos (e+f x)}{8 f (3+3 \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {\cos (e+f x)}{24 f \sqrt {3+3 \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {\text {arctanh}(\sin (e+f x)) \cos (e+f x)}{24 c f \sqrt {3+3 \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

[Out]

-1/4*cos(f*x+e)/f/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(3/2)-3/8*cos(f*x+e)/a/f/(a+a*sin(f*x+e))^(3/2)/(c-c
*sin(f*x+e))^(3/2)+3/8*cos(f*x+e)/a^2/f/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2)+3/8*arctanh(sin(f*x+e))*
cos(f*x+e)/a^2/c/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 188, normalized size of antiderivative = 1.05, number of steps used = 5, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {2822, 2820, 3855} \[ \int \frac {1}{(3+3 \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx=\frac {3 \cos (e+f x) \text {arctanh}(\sin (e+f x))}{8 a^2 c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {3 \cos (e+f x)}{8 a^2 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {3 \cos (e+f x)}{8 a f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}-\frac {\cos (e+f x)}{4 f (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{3/2}} \]

[In]

Int[1/((a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

-1/4*Cos[e + f*x]/(f*(a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e + f*x])^(3/2)) - (3*Cos[e + f*x])/(8*a*f*(a + a*S
in[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2)) + (3*Cos[e + f*x])/(8*a^2*f*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin
[e + f*x])^(3/2)) + (3*ArcTanh[Sin[e + f*x]]*Cos[e + f*x])/(8*a^2*c*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[
e + f*x]])

Rule 2820

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Di
st[Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[1/Cos[e + f*x], x], x] /; FreeQ[{a, b
, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2822

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] + Dist[(m + n + 1)/(a*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
&& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + n + 1], 0] && NeQ[m, -2^(-1)] && (SumSimplerQ[m
, 1] ||  !SumSimplerQ[n, 1])

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {\cos (e+f x)}{4 f (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}}+\frac {3 \int \frac {1}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx}{4 a} \\ & = -\frac {\cos (e+f x)}{4 f (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}}-\frac {3 \cos (e+f x)}{8 a f (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {3 \int \frac {1}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx}{4 a^2} \\ & = -\frac {\cos (e+f x)}{4 f (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}}-\frac {3 \cos (e+f x)}{8 a f (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {3 \cos (e+f x)}{8 a^2 f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {3 \int \frac {1}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx}{8 a^2 c} \\ & = -\frac {\cos (e+f x)}{4 f (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}}-\frac {3 \cos (e+f x)}{8 a f (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {3 \cos (e+f x)}{8 a^2 f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {(3 \cos (e+f x)) \int \sec (e+f x) \, dx}{8 a^2 c \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = -\frac {\cos (e+f x)}{4 f (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}}-\frac {3 \cos (e+f x)}{8 a f (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {3 \cos (e+f x)}{8 a^2 f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {3 \text {arctanh}(\sin (e+f x)) \cos (e+f x)}{8 a^2 c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.13 (sec) , antiderivative size = 274, normalized size of antiderivative = 1.53 \[ \int \frac {1}{(3+3 \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx=\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (154+48 \log \left (1-\tan \left (\frac {1}{2} (e+f x)\right )\right )+6 \cos (2 (e+f x)) \left (31+8 \log \left (1-\tan \left (\frac {1}{2} (e+f x)\right )\right )-8 \log \left (1+\tan \left (\frac {1}{2} (e+f x)\right )\right )\right )-48 \log \left (1+\tan \left (\frac {1}{2} (e+f x)\right )\right )+3 \left (-9+8 \log \left (1-\tan \left (\frac {1}{2} (e+f x)\right )\right )-8 \log \left (1+\tan \left (\frac {1}{2} (e+f x)\right )\right )\right ) \sin (e+f x)+69 \sin (3 (e+f x))+24 \log \left (1-\tan \left (\frac {1}{2} (e+f x)\right )\right ) \sin (3 (e+f x))-24 \log \left (1+\tan \left (\frac {1}{2} (e+f x)\right )\right ) \sin (3 (e+f x))\right )}{2304 \sqrt {3} c f (-1+\sin (e+f x)) (1+\sin (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}} \]

[In]

Integrate[1/((3 + 3*Sin[e + f*x])^(5/2)*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

((Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(154 + 48*Log[1 - Tan[(e + f*x)/2
]] + 6*Cos[2*(e + f*x)]*(31 + 8*Log[1 - Tan[(e + f*x)/2]] - 8*Log[1 + Tan[(e + f*x)/2]]) - 48*Log[1 + Tan[(e +
 f*x)/2]] + 3*(-9 + 8*Log[1 - Tan[(e + f*x)/2]] - 8*Log[1 + Tan[(e + f*x)/2]])*Sin[e + f*x] + 69*Sin[3*(e + f*
x)] + 24*Log[1 - Tan[(e + f*x)/2]]*Sin[3*(e + f*x)] - 24*Log[1 + Tan[(e + f*x)/2]]*Sin[3*(e + f*x)]))/(2304*Sq
rt[3]*c*f*(-1 + Sin[e + f*x])*(1 + Sin[e + f*x])^(5/2)*Sqrt[c - c*Sin[e + f*x]])

Maple [A] (verified)

Time = 3.07 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.12

method result size
default \(\frac {\sec \left (f x +e \right ) \left (3 \sin \left (f x +e \right ) \left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-3 \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )-1\right )+3 \left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-3 \left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )-1\right )-2 \left (\sin ^{3}\left (f x +e \right )\right )+\sin ^{2}\left (f x +e \right )+5 \sin \left (f x +e \right )\right )}{8 f c \,a^{2} \left (\sin \left (f x +e \right )+1\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {a \left (\sin \left (f x +e \right )+1\right )}}\) \(200\)

[In]

int(1/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/8/f*sec(f*x+e)*(3*sin(f*x+e)*cos(f*x+e)^2*ln(-cot(f*x+e)+csc(f*x+e)+1)-3*cos(f*x+e)^2*sin(f*x+e)*ln(-cot(f*x
+e)+csc(f*x+e)-1)+3*cos(f*x+e)^2*ln(-cot(f*x+e)+csc(f*x+e)+1)-3*cos(f*x+e)^2*ln(-cot(f*x+e)+csc(f*x+e)-1)-2*si
n(f*x+e)^3+sin(f*x+e)^2+5*sin(f*x+e))/c/a^2/(sin(f*x+e)+1)/(-c*(sin(f*x+e)-1))^(1/2)/(a*(sin(f*x+e)+1))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 371, normalized size of antiderivative = 2.07 \[ \int \frac {1}{(3+3 \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx=\left [\frac {3 \, {\left (\cos \left (f x + e\right )^{3} \sin \left (f x + e\right ) + \cos \left (f x + e\right )^{3}\right )} \sqrt {a c} \log \left (-\frac {a c \cos \left (f x + e\right )^{3} - 2 \, a c \cos \left (f x + e\right ) - 2 \, \sqrt {a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{\cos \left (f x + e\right )^{3}}\right ) - 2 \, {\left (3 \, \cos \left (f x + e\right )^{2} - 3 \, \sin \left (f x + e\right ) - 1\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{16 \, {\left (a^{3} c^{2} f \cos \left (f x + e\right )^{3} \sin \left (f x + e\right ) + a^{3} c^{2} f \cos \left (f x + e\right )^{3}\right )}}, -\frac {3 \, {\left (\cos \left (f x + e\right )^{3} \sin \left (f x + e\right ) + \cos \left (f x + e\right )^{3}\right )} \sqrt {-a c} \arctan \left (\frac {\sqrt {-a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{a c \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right ) + {\left (3 \, \cos \left (f x + e\right )^{2} - 3 \, \sin \left (f x + e\right ) - 1\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{8 \, {\left (a^{3} c^{2} f \cos \left (f x + e\right )^{3} \sin \left (f x + e\right ) + a^{3} c^{2} f \cos \left (f x + e\right )^{3}\right )}}\right ] \]

[In]

integrate(1/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

[1/16*(3*(cos(f*x + e)^3*sin(f*x + e) + cos(f*x + e)^3)*sqrt(a*c)*log(-(a*c*cos(f*x + e)^3 - 2*a*c*cos(f*x + e
) - 2*sqrt(a*c)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*sin(f*x + e))/cos(f*x + e)^3) - 2*(3*cos(f*
x + e)^2 - 3*sin(f*x + e) - 1)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c))/(a^3*c^2*f*cos(f*x + e)^3*s
in(f*x + e) + a^3*c^2*f*cos(f*x + e)^3), -1/8*(3*(cos(f*x + e)^3*sin(f*x + e) + cos(f*x + e)^3)*sqrt(-a*c)*arc
tan(sqrt(-a*c)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(a*c*cos(f*x + e)*sin(f*x + e))) + (3*cos(f*
x + e)^2 - 3*sin(f*x + e) - 1)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c))/(a^3*c^2*f*cos(f*x + e)^3*s
in(f*x + e) + a^3*c^2*f*cos(f*x + e)^3)]

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(3+3 \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(1/(a+a*sin(f*x+e))**(5/2)/(c-c*sin(f*x+e))**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {1}{(3+3 \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx=\int { \frac {1}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((a*sin(f*x + e) + a)^(5/2)*(-c*sin(f*x + e) + c)^(3/2)), x)

Giac [A] (verification not implemented)

none

Time = 0.73 (sec) , antiderivative size = 221, normalized size of antiderivative = 1.23 \[ \int \frac {1}{(3+3 \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx=\frac {\sqrt {c} {\left (\frac {6 \, \log \left (-\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 1\right )}{a^{\frac {5}{2}} c^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {12 \, \log \left ({\left | \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}\right )}{a^{\frac {5}{2}} c^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {6 \, \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 3 \, \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 1}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 1\right )} a^{\frac {5}{2}} c^{2} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}\right )}}{32 \, f} \]

[In]

integrate(1/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

1/32*sqrt(c)*(6*log(-cos(-1/4*pi + 1/2*f*x + 1/2*e)^2 + 1)/(a^(5/2)*c^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sg
n(sin(-1/4*pi + 1/2*f*x + 1/2*e))) - 12*log(abs(cos(-1/4*pi + 1/2*f*x + 1/2*e)))/(a^(5/2)*c^2*sgn(cos(-1/4*pi
+ 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) + (6*cos(-1/4*pi + 1/2*f*x + 1/2*e)^4 - 3*cos(-1/4*pi
 + 1/2*f*x + 1/2*e)^2 - 1)/((cos(-1/4*pi + 1/2*f*x + 1/2*e)^2 - 1)*a^(5/2)*c^2*cos(-1/4*pi + 1/2*f*x + 1/2*e)^
4*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))))/f

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(3+3 \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}} \, dx=\int \frac {1}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{5/2}\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(1/((a + a*sin(e + f*x))^(5/2)*(c - c*sin(e + f*x))^(3/2)),x)

[Out]

int(1/((a + a*sin(e + f*x))^(5/2)*(c - c*sin(e + f*x))^(3/2)), x)